

Introduction to FIB-SEM

Basic Physics and Applications

Joakim Reuteler, Nonmetallic Inorganic Materials

Outline

- 1. Ga⁺ source: LMIS
- 2. A combined microscope
 - 2.1. Focused Ion Beam (FIB)
 - 2.2. Scanning Electron Microscope (SEM)
 - 2.3. CrossBeam[®] NVision 40 from Carl Zeiss SMT
- 3. Micromanipulator MM3A from Kleindiek
- 4. Applications overview
 - 4.1. Cross Section (CS) the basic skill!
 - 4.2. TEM lamella preparation
 - 4.3. Deposition and Milling with "feature mill"
- 5. Outlook and Literature

1. Ga⁺ source: LMIS

Gilbert (1600)

- fluid under high tension forms a cone \rightarrow Gilbert cone
- even a thin thread can be sprayed out (jet)

Taylor (1964)

- exactly conical solution to equations of Electro Hydro Dynamics (EHD) → Taylor cone
- experimentally confirmed the conical shape

→ Taylor-Gilbert cone

Remark.

MRC Kolloquium on Dec 19, 2007
A.L. Yarin: "Electrospraying of
Nanofibres and Nanotubes"
→ Gilbert was the scientist (and probably lover of) Queen Elisabeth
I, she was very fond of physical phenomena.

1. Ga⁺ source: LMIS

2. A combined microscope

2.1. Focused Ion Beam (FIB)

Ion column

- Ga⁺ source (LMIS)
- ion optics (electrostatic lenses)
- fast beam blanker (electrostatic)
- different currents (aperture stripe)
- adjustable acceleration voltage

2.1. Focused Ion Beam (FIB)

- SMALL CURRENT → NARROW BEAM
- Beam tails can extend up to some μm

2.1. Focused Ion Beam (FIB): interaction with sample

Ga⁺ beam hits substrate and yields

- secondary electrons
- sputterd atoms and ions
- implantation of Ga
- amorphisation /recrystallization

3 FIBing "modes":

- imaging, milling and deposition happen simultaneously
- ion current + atmosphere
 - \rightarrow pronounce one aspect!

Remarks.

- i) Implantation and amorphisation also occur at grazing incidence.
- Depth of damage layer depends also on energy of Ga⁺.
- Impinging Ga⁺ always mill a little bit and produce secondary electrons
- Sample surface is damaged more with increasing Ga⁺ exposure

2.1. Focused Ion Beam (FIB): imaging

SE image from scanning with eBeam (3 kV, 120 um, hc)

SE image from scanning with FIB (30 kV, 40 pA)

FIB imaging:

- impinging Ga⁺ produce secondary electrons
 → ET or InLens detector
- typically at 30 kV, 40 pA
 → optimal resolution and signal
- other currents and energies
 → different contrast

Advantages:

- channeling contrast
- removal of oxide layer

Disadvantages:

• damage of surface

Remark.

Now a days there is scanning He microscopy

- \rightarrow high contrast
- ightarrow highest resolution

2.1. Focused Ion Beam (FIB): milling

2nd 1st

FIB as a nano scalpell: milling

- sputter process
- less damage at cutting surface for small currents
- resolution better for small current but high currents mill faster
 → use series of decreasing currents
- redeposition (all in one layer gives a wedge) → milling strategy is important ("milling mode" / "deposition mode")
- dwell time! (个 for ceramics)
- pixel fill factor \geq 100 % is OK

2.1. Focused Ion Beam (FIB): depostion

Deposition of material

- nozzel → local gas atmosphere
- decomposition of precursor gas \rightarrow CVD
- ion current = Area x 5 $pA/\mu m^2$
- pixel fill factor = 40 70 %!
- short dwell time
 (0.4 μs for C, 0.2 μs for Pt)
- also possible to use e-beam for depo
 → 1 kV & slow scanning speed!
- deposited material: mixture of Ga, C and the depo species

Examples of species that can be deposited: C, Pt, W, Pd, SiO₂

- Deposited species is not pure: lots of Ga and C
- Deposition without surface damage only by eBeam deposition

2.1. Focused Ion Beam (FIB): enhanced milling

Enhanced milling (etching)

- impinging Ga⁺ knocks out atoms and ions from sample
- redeposition is prevented by chemical reaction with the adsorbed gas
 → formation of volatile species
- etching gases that react only with certain species
 a solutions milling
 - \rightarrow selective milling

Examples of etching gases XeF₂ \rightarrow enhanced Si and insulator milling I₂ \rightarrow enhanced metal milling

 $H_2O \rightarrow$ enhanced carbon (polymers, ...) milling

2.2. Scanning Electron Microscope (SEM)

SEM

- probesize vs
 interaction volume
 → resolution
- imaging using several different signals
 → information

Size of interaction volume depends on eBeam energy and atomic number of material

Signal	Use	Resolution (typical)	Detector
SE	Best surface sensibility	3 nm	SE, InLens
BSE	Z-contrast	15 nm	EsB
BSE	cristallographic information	15 nm	EBSD
X-Ray	semi-quantitative chemical information	500 nm	EDX

2.2. Scanning Electron Microscope (SEM)

Best resolution at 1 kV effectively 10 nm, for 20 kV maybe 5 nm. \rightarrow Don't expect too much!

2.2. Scanning Electron Microscope (SEM)

Pecularities of working in a combined microscope

• working in coincidence point, i.e. WD 5 mm Steve BROVELLE for low EHT

"Hay samples look different than from top view!

with a Dit a Beanning and high current mode → really strong contrast, again samples look different than at "normal" settings understanding the geometry!"

Why all this?

- see same spot with SEM and FIB
- normal incidence for FIB
- simultaneous FIBing and SEMing

2.3. CrossBeam[®] NVision 40 from Carl Zeiss SMT

Radial distribution

2.3. CrossBeam® NVision 40 from Carl Zeiss SMT

FIB column: SII Zeta

- fixed number of appertures: 13
- condensor allows to adjust current for each apperture
 → in principle different sets of currents are possible
- adjustable acceleration voltage
 → sets of currents for different voltages
- problem with stability of LMIS \rightarrow often need to heat

In Smart SEM: FIB control

- FIB imaging only with imaging current (typically 40 pA, 30 kV)
- FIB milling box is set in FIB image, column optics values are computed for the milling current from a list
 - \rightarrow well aligned currents needed to avoid shifts!
- new program "daily align"
 - ightarrow adjust those currents that you will use that day

Rule: Do not click auto extractor!

2.3. CrossBeam[®] NVision 40 from Carl Zeiss SMT, "Our" FIB-SEM

Organization

- System is part of EMEZ \rightarrow acknowledge support in publications
- System was partially financed by SNF \rightarrow acknowledge support
- Room: HPM A66 (33312)
- Technician: Philippe Gasser, HPT C 104 (36541)

Booking

- no booking more than 2 weeks in advance
- 25 % from 8 am to 5 pm is reserved for EMEZ
- NMW, LNM, LMPT, MICRO have special access rights for the first 3 years (i.e. until June 2010)
 → 75 % from 8 am to 5 pm together
- please don't waste the precious beam time!

2.3. CrossBeam[®] NVision 40 from Carl Zeiss SMT, "Our" FIB-SEM

Configuration

- fully motorized 6-axes stage (m-axis: adjust tilting axis)
- GIS:
 - 2 solid state precursors: Pt, C (soon Pd, W)
 - insulator deposition: SiO₂
 - etching gases: H₂O (soon XeF₂)
- EDX and EBSD detectors: EDAX Pegasus XM 2 System (mounting positions do not allow for simultaneous data acquisition)
- Lithography kit: Raith ELPHY Quantum

 → external high precision control of eBeam and FIB
 → import of GDS2 files
- Micromanipulators: Kleindiek MM3A
 - 1 for TEM lamella lift-out
 - 4 for special purposes
- load lock

3. Micromanipulator MM3A from Kleindiek

MM3A: MicroManipulator with 3 Axes

A) roof mounted MM3A

ightarrow for TEM lamella lift-out

- B) stage or door mounted MM3A
 - → multi purpose:
 e.g. electrical measurements,
 manipulation of nano objects,
 force measuremnts

add-ons:

- gripper: like tweezers
- rotip: rotatable tip
- force measurement sensor (\rightarrow LNM)

3. Micromanipulator MM3A from Kleindiek: steering

4. Applications overview

Cross Section: cut flat section for looking into the material

- width x depth \approx 2 x 1 μ m² to 50 x 20 μ m²
- typically 1 2 h work

TEM lamella preparation: cut a thin lamella for inspection in TEM

- width x depth $\approx 10 \times 5 \ \mu m^2$
- thickness ≈ 60 to 200 nm
- typically 6 12 h work

Deposition / milling with "feature mill": complex patterns, special milling strategies

- load bit maps with prepared patterns
- maybe 30 min to 1 h of work

4.1. Cross Section (CS) – the basic skill

Bring sample into coincidence

- adjust eucentricity (M axis) \rightarrow 54° tilt
- set WD to 5.25 mm and drive into focus (Z axis)
- switch to FIB and fine tune Z, adjust Y beam shift

Three steps for preparation of a Cross Section (CS)

- deposition of protective layer
- milling a large trapezoid trench
- polishing the CS

Why is this "the basic skill"?

• If you can do properly a cross section, then you can do everything else as well as well.

4.1. Cross Section (CS) – the basic skill

Detailed receipe:

deposition of protective layer: RECTANGULAR BOX

- typically area A = 2 x 15 μ m²
- deposition with thickness, typically 2 μm
- current = $A \cdot 5 pA/\mu m^2$ (e.g.) 30x5 pA = 150 pA)
- pixel fill factor 40 75 % (adjust milling resolution)
- dwell time (0.4 μ s for C, 0.2 μ s Pt)

milling a large trench: COARSE TRAPEZOID

- depth ≈
- height ≈ depth
- current \approx 15 nA
- dwell time large for hard material

polishing CS: FINE TRAPEZOID

- for each current down to 40 pA do a milling

imaging CS: SEM MODE

- adjust tilt correction angle to 36°
- take micrographs from overview to detail view

4.2. TEM Lamella preparation

TEM lamella preparation:

- protection layer
- cut two big trenches
- Cut free lamella partially
- solder it to a manipulator tip
- cut free lamella from sample
- lift-out the lamella
- bring TEM grid to coincidence point
- solder lamella to TEM grid
- cut free manipulator tip
- final thinning of lamella

4.2. TEM Lamella preparation

Details of in-situ lift-out:

big trenches milled, lamella is 1 μ m thick

- → change stage tilt to 10°, cut free lamella partially use deposition mode for milling
- → insert micromanipulator, bring tip to lamella and at Switch on SCM! Do not press on lamella!
- → cut free lamella Move stage down for "lift-out"!
- → bring TEM grid to WD 6 mm at 10° stage tilt, adjust Switch between FIB and SEM imageing in TV mode
- → bring lamella in touch with grid and solder them to Check that SCM is on! Do not press lamella to grid!
- ightarrow drive away lamella, then sharpen the tip
- \rightarrow bring lamella in coincidence at 54+ Δ° and polish

4.3. Feature mill

Example:

Milling or deposition of regular dots

- prepare a bitmap using your favourite graphics program and compute the area of the pattern
- bring sample into coincidence point
- select region on which the pattern shall be
- open feauture mill and draw in an image
- load your bitmap and select a rectangle
- compute the dose from magnification and area remember high currents have large beam diameter → resolution limit!
- start

Outlook

Many more things (applications) can be done with a FIB-SEM!

Examples are:

- contacting of small structures by metal deposition
- non perpendicular sections
- EDX linescan of mapping on a section
- EBSD mapping on a section
- automated repeated cross sectioning \rightarrow 3D image
-

Literature

- R. G. Forbes, Understanding how the liquid-metal ion source works, *Vacuum*, Vol 48, no 1, pg 85-97 (1997)
- S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology, *J. Micromech. Microeng.* **11** (2001), 287-300