

From Thin Films to Power Delivering Micro-Solid Oxide Fuel Cell Membranes

Jennifer L.M. Rupp, P. Elser, A. Evans, H. Galinski, T. Ryll, B. Scherrer, R. Tölke, D.

Yesudas, A. Bieberle-Hütter, L.J. Gauckler.

Outline

Introduction

Results on μ SOFC

Thin films

Processing

Power

Summary Outlook

Micro-Solid Oxide Fuel Cell (µSOFC) Membranes

µSOFCs: Replacement of Li-ion batteries in portable electronics

- High efficiency & energy density, fuel flexibility, geographically independence
- Per membrane > 400 mW/cm² at 200-550°C

Bieberle-Hutter, A., et al., A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 2008. 177(1): p. 123-130.

From thin films to power delivering µSOFCs

(1) I Kosacki et al., H Anderson, Solid State Ionics, 2000, 136: 1225.

(2) JLM Rupp et al., LJ Gauckler, Acta Materialia, 2006, 54(7): 1721.

(3) S Heiroth et al., T Lippert Appl. Physica A, 2008, in press.

(4) H Huang et al., F Prinz , Solid State Ionics, 2008, in press.

(5) JLM Rupp et al., LJ Gauckler, . J. of American Cer. Soc., 2007, 90(6): 1792

(6) X Hu et al., S. Averback , J. of Appl. Physics, 2001, 89(12): 7777.

(7) J Hertz , H Tuller, J of Electrochemistry, 2007, 154(4): B413.
(8) U Muecke, LJ Gauckler, Solid State Ionics 2008, 178: 1762.
(9) Wang et al., F Prinz , J. of Power Sources, 2008, 175: 75.
(10) V Brichzin, J Fleig, et al., J. Maier, Solid State Ionics 2002, 152: 499.
(11) A Bieberle-Hütter, M Søgaard, HL Tuller, Solid State Ionics , 2006, 177: 1969.
(12) D Beckel et al., LJ Gauckler, Solid State Ionics , 2007, 178: 407.

(13) M Prestat et al., LJ Gauckler, J. of Electroceramics, 2007, 18: 111.
(14) C Peters, A Weber, E Ivers-Tiffée, J. of the Electrochemical Society, 2008, 155 [7]: B730
(15) CD Baertsch, H Tuller, J. of Material Research, 2004, 19(9)
(16) JLM Rupp, U Muecke, D. Beckel, LJ Gauckler, ETH Zurich, 2005
(17) M Greenberg et al., Adv. Funct. Materials, 2006, 16(1): 48.
(18) UP. Muecke et al., LJ Gauckler, Adv. Funct. Materials, accepted 2008.
(19) H Huang et. al., F Prinz, J. Electrochem. Soc., 2007, 154 (1): B20

From thin films to power delivering μ SOFCs

Plenty unsolved questions: From fundemental thin film properties to power delivering µSOFC

Outline

Introduction

Results on $\mu SOFC$

Thin films

Processing

Power

Summary Outlook

The simplest µSOFC thin film material concept

Only 2 film materials Pt and $Y_{0.08}Zr_{0.92}O_{2-x}$: Microstructures & electric properties triggered via annealing.

Platinum Thin Film Electrodes

Pt thin film dewetting is strongly f(film thickness, temperature) \rightarrow trigger the electrode ASR

on-going PhD thesis: Henning Galinski & Thomas Ryll, P. Elser, Nonmetallic Inorganic Materials, ETH Zurich

Special electrochemical test-chips developed for µSOFC electrode characterization

Y_{0.08}Zr_{0.92}O_{2-x} Electrolyte – Electrical Conduction

on-going PhD thesis: Barbara Scherrer, Nonmetallic Inorganic Materials, ETH Zurich

[1] Infortuna, A., A.S. Harvey, and L.J. Gauckler, Advanced Functional Materials, 2008. 18: p. 127-135.

- [2] Hertz, J.L. and H.L. Tuller, Journal of Electroceramics, 2004. 13(1-3): p. 663-668.
- [3] Kosacki, I., et al., Solid State Ionics, 2000. 136-137: p. 1225-1233.
- [4] Garcia-Sanchez, M.F., et al., Solid State Ionics, 2008. 179(7-8): p. 243-249.
- [5] J. H. Joo and G. M. Choi, Solid State Ionics, vol. 177, pp. 1053-1057, 2006.

- [6] T. Petrovsky, H. U. Anderson, and V. Petrovsky, Solid State Ionics 2002. Symposium (Mater. Res. Soc. Symposium Proceedings Vol.756), pp. 515-20|xvi+575, 2003.
- [7] S. Heiroth, Th. Lippert, A.Wokaun and M. Döbeli, Applied Physics A, [in press]
- [8] D. Perednis, PhD, ETH Zurich, Nr. 15190, 2003.

Y_{0.08}Zr_{0.92}O_{2-x} Electrolyte – Electrical Conduction

- [1] Infortuna, A., A.S. Harvey, and L.J. Gauckler, Advanced Functional Materials, 2008. 18: p. 127-135.
- [2] Hertz, J.L. and H.L. Tuller, Journal of Electroceramics, 2004. 13(1-3): p. 663-668.
- [3] Kosacki, I., et al., Solid State Ionics, 2000. 136-137: p. 1225-1233.
- [4] Garcia-Sanchez, M.F., et al., Solid State Ionics, 2008. 179(7-8): p. 243-249.
- [5] J. H. Joo and G. M. Choi, Solid State Ionics, vol. 177, pp. 1053-1057, 2006.

- [6] T. Petrovsky, H. U. Anderson, and V. Petrovsky, Solid State Ionics 2002. Symposium (Mater. Res. Soc. Symposium Proceedings Vol.756), pp. 515-20|xvi+575, 2003.
- [7] S. Heiroth, Th. Lippert, A.Wokaun and M. Döbeli, *Applied Physics A*, [in press]
- [8] D. Perednis, PhD, ETH Zurich, Nr. 15190, 2003.

Y_{0.08}**Zr**_{0.92}**O**_{2-x}**Electrolyte – Electrical Conduction**

on-going PhD thesis: Barbara Scherrer, Nonmetallic Inorganic Materials, ETH Zurich

one material, but differencent: grain size, degree of crystallinity, strain...

Y_{0.08}Zr_{0.92}O_{2-x}Electrolyte

Dense films result after annealing, but grain microstructure is influenced by initial processing.

on-going PhD thesis: Barbara Scherrer, Nonmetallic Inorganic Materials, ETH Zurich

Y_{0.08}Zr_{0.92}O_{2-x}Electrolyte

Non-Vaccuum-technique: Spray pyrolysis

brick-layer grained microstructure - after annealing of amorphous film

Vaccuum-technique: Pulsed laser deposition (PLD)

columnar grained thin films - after annealing of crystalline film

µSOFC electrolyte microstructures is engineerable via annealing and use of different deposition techniques

on-going PhD thesis: Barbara Scherrer, Nonmetallic Inorganic Materials, ETH Zurich

amorphous spray pyrolysis films at deposition

nanocrystalline spray pyrolysis film after annealing

Y_{0.08}Zr_{0.92}O_{2-x}Electrolyte

> Total electrical conductivity increases with increasing crystallinity.

on-going PhD thesis: Barbara Scherrer, Nonmetallic Inorganic Materials, ETH Zurich

Outline

Introduction

Results on µSOFC

Thin films

Processing

Power

Summary Outlook

Foturan glass-ceramic wafer piece

Sputtered current collectors

anode thin film depositions

electrolyte thin film depositions

cathode thin film depositions

free standing membranes covered with photoresist

free standing SOFC membranes

free standing SOFC membranes before cell testing

free standing SOFC membranes after cell testing at 550 °C

Micro-SOFC membranes on Foturan substrates are feasible: 200 μ m wide & < 1 μ m thin

Outline

Introduction

Results on µSOFC

Thin films

Processing

Power

Summary Outlook

SEM: Y_{0.08}Zr_{0.92}O_{2-x} thin films

on-going PhD thesis: Rene Tölke, Nonmetallic Inorganic Materials, ETH Zurich

SEM: $Y_{0.08}Zr_{0.92}O_{2-x}$ thin films

electrolyte thickness amount of alternating layers (columnar & brick-like)

on-going PhD thesis: Rene Tölke, Nonmetallic Inorganic Materials, ETH Zurich

 \Rightarrow Free-standing membrane operates with 237 mW/cm² at 550°C

on-going PhD thesis: Anna Evans & Rene Tölke, Nonmetallic Inorganic Materials, ETH Zurich

Outline

Introduction

Results on µSOFC

- Thin films
- Processing
- Power

Summary

Outlook

Summary

Micro-Solid Oxide Fuel Cells are feasible: 210 mW/cm² at 550
 °C per membrane.

 Performance is highly affected by the choice of SOFC thin film material and its microstructure.

Outline

Introduction

Results on µSOFC

- Thin films
- Processing
- Power

Summary

Outlook

Acknowledgements and Funding

Thank you:

-the Micro-Solid Oxide Fuel Cell team at ETH Zurich

-NANCER partners

-ONEBAT partners

Funding:

