



Research supported by: National Science Foundation and Department of Energy



Tuller/08

## Silicon Age: Solid State Electronics





2000 times smaller than human hair

#### > Miniaturization

• Increase device density by 10<sup>9</sup>

www.germes

- Complex functionality
- Low power; long life; robust
- Highly reproducible
- Low cost



## Solid State Ionics - Scalable - Integration

- Solid state membranes: Ready separation of reactants; High chemical and thermal stability; High power density
- Thin film microelectronics/MEMS compatible
- Electrochemical devices scale w/o loss of efficiency









## Micro Solid Oxide Fuel Cells













μ-SOFC promise ~5 times higher energy densities than Li ion batteries!

## Micro-SOFCs: Portable Power

- High energy density
  - Extended operation
  - Quick recharge
- Rapid turn on





Baertsch, Jensen, Hertz, Tuller, Vengallatore, Spearing, and Schmidt, J. Mater. Res. 19 2604 (2004)



## I. Electrolyte – Resistance, R<sub>SE</sub>: *Scaling*

Thin films offer **low ohmic resistance**, and potential operation <400C.



Tuller/08 B.C.H. Steele and A. Heinzel, *Nature*, **414**, 345-352 (2001).

## Ionic Conductivity – YSZ: R<sub>SE</sub>, Beyond Scaling



Ionic conductivity 9YSZ (a) tapecast YSZ; (b) (111) oriented YSZ single crystal;
(c) YSZ films (200-500nm) deposited on silica substrates – reactive sputtering;
White stripe in background approximates range of literature values

#### Josh Hertz, PhD thesis, MIT, 2006



## Colossal Ionic Conductivity @ Interfaces!!??



•lonic conductivity of STO/YSZ/STO trilayers: Thickness range of the YSZ layer is 1 to 62 nm.

•Top inset: 400 K conductance of [YSZ1nm/STO10nm] superlattices as a function of the number of interfaces, n<sub>i</sub>.

•Bottom inset: Dependence of conductance of [STO10nm/YSZXnm/STO10nm] trilayers at 500 K on YSZ layer thickness.

#### Increase by factor of ~10<sup>10</sup> Is that feasible?

Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO<sub>2</sub>:Y<sub>2</sub>O<sub>3</sub>/SrTiO<sub>3</sub> Heterostructures J. Garcia-Barriocanal et. al., *Science* 321, 676 (2008)



## Nanocrystalline *Ionic* Solids

• What happens as grain boundaries come closer together?







## Nanoscale in *Microionics*



# **Grain Boundary Engineering**





# Heterogeneous Doping: Nano-CeO<sub>2</sub>



- Heterogenous doping feasible at intermediate temperatures
- Space charge barrier control investigated
- Lifetime implications identified.

Tuller/08



## **Dopant Redistributions**

- The decrease in both partial conductivities (by electron blocking) cannot be described solely by a change in ΔΦ
- In addition to grain growth, what other physical changes are occurring?
- Must consider redistribution of dopant cations



See e.g. I. Riess, Solid State Ionics 44, (1991)199.



- Limited SOFC performance by slow cathodic reactions at reduced T
  - Limited degree of understanding

# Majority of Cathode studies

- Complex electrode morphologies
- Difficulty in controlling properties



## Scalable Geometries/Model Systems

Independent control of: TPB length, contact area, conduction path length, thicknes



## Electrode Performance: YSZ Dependent!



# SrTi<sub>1-x</sub>Fe<sub>x</sub>O<sub>3-d</sub> (STF) Model MIEC Cathode





Rothschild, A, Tuller, H.L., et al., Chem. Mater, 18, 3651 (2006)

#### **MIEC: Mixed Ionic Electronic Conductor**

Rothschild, Litzelman, Tuller, Menesklou, Schneider, and Ivers-Tiffee Sens. Actuators B, 108, 223 (2005).



### Surface Reaction Controlled Rc





YSZ

Tuller/08

### Model STF: Comparable to Best Cathodes!





## Surface Exchange Coefficient – Control?

 $k^{q} = \frac{k T}{4 e^{2} R_{s} C_{o}}$  Maier, J., Physical Chemistry of Ionic Materials, Wiley 2004 T=800°C  $D (\text{cm}^2/\text{s})$  $\sigma_{ion}$  (S/cm) k (cm/s) $\sigma_{\rm el}$  (S/cm)  $t_{\rm e}$  $10^{-3} \sim 10^{-2}$  $10^{-4} \sim 10^{-3}$ STF5  $1.2 \times 10^{-5}$ N/A N/A  $2.0 \times 10^{-5}$  $1.0 \times 10^{-7}$ 9.9 × 10<sup>-1</sup>  $3.5 \times 10^{-2}$ STF35 0.9659 STF50  $1.7 \times 10^{-5}$  $1.1 \times 10^{-7}$ 1.8  $3.6 \times 10^{-2}$ 0.9804 5.6 × 10<sup>-6</sup>  $2.5 \times 10^{-8}$ 302 8 × 10<sup>-3</sup> 0.9997  $*La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3}$ 

**Electronic conductivity varies by ~ 5 orders of magnitude!** 

Rothschild, A, Tuller, H.L., et al., Chem. Mater, 18, 3651 (2006)

\* Ullmann, H., Solid State Ionics, 138, 79 (2000).

\*Benson, S.J., in Proc. 3rd Int. Symp. Ionic and Mixed Conducting Ceramics, PV 97-24, p. 596 (1997).

Tuller/08

# Semiconducing Metal Oxide Sensor Device Physics

**SnO**<sub>2</sub>, **ZnO**, **TiO**<sub>2</sub>...



George Whitfield & Yoonsil Jin



- Investigating positions and binding energies of *volatile* surface states
  - photostimulated desorption
  - work function measurements
  - field effect





#### **Gauckler Group:**

#### **Basic Science, Clever Processing; Systems Integration**



Miniaturized fuel cell systems: Challenges and chances, Anja Bieberle-Hütter

Tuller/08

## Summary

#### Solid state membranes – enable microionics:

- Micropower fuel cells, batteries
- Microsensor arrays
- Thin film and microelectronic processing:
  - Nanoscale dimensions; metastable phases
  - Model structures: scalable over orders of magnitude
  - High and controlled purity; reproducible
- Acknowledgement Support by National Science Foundation
- Josh Hertz, Scott Litzelman, WooChul Jung, Yoonsil Jin
- Anja Bieberle-Hűtter, Avner Rothschild, II-Doo Kim, Kathy Sahner

