Photoaddressable Block Copolymers as Material for Volume Holographic Data Storage

Carsten Frenz, Michael Häckel, Lothar Kador,

Hans-Werner Schmidt

Makromolecular Chemistry and Experimental Physics

Bayreuther Institut für Makromolekülforschung (BIMF) Universität Bayreuth, Germany

International Materials Forum, 1. August 2005

Motivation

Fundamental aspects

- control of multi-level order on different length scales
- manipulation on nanometer scale
- photochemistry in confined geometries

Application possibilities

holographic data storage

Development of storage capacity

Volume holographic digital data storage

J. Ashley et.al., IBM J. Research Development 44(3) 2000, modified

Volume holographic digital data storage

Reading principle

J. Ashley et.al., IBM J. Research Development 44(3) 2000, modified

Optical data storage

Material requirements for volume holographic storage

- photoeffect (local modulation of refractive index)
- sufficient high ∆n
- excellent optical quality throughout the sample
- sample thickness of 1–2 mm (hologram multiplexing)
- optical density 0.5 0.7 (utilizing of total volume)
- low response time (milliseconds)
- long-term stability of the stored information

Photoaddressable polymers

Light-induced isomerization

Azo-dye containing side-group polymers

source: BAYER AG

⇒ chromophores orient perpendicular to the polarization plane

M. Eich, J.H. Wendorff, H. Ringsdorf, H.-W. Schmidt, Makromol.Chem. **186**, 2639 (1985). BAYER-research, 36 (1999). R.H. Berg, S. Hvilsted, et al., Nature **383**, 505 (1996). X. Meng, A. Natansohn, et al., Polymer **38** (11), 2677 (1997). And others.

Polymer systems for holographic storage

Doped polymers

migration, macrophase separation, stability

• Homopolymers

too high optical density, formation of surface gratings

Polymer blends

macrophase separation results in bulk scattering

Statistical copolymers

loss of cooperative effect

Block copolymers

Block copolymers

> Self organization into ordered nanophase separated morphologies

Advantages as holographic storage material

- localized concentration and confinement of addressable units
- cooperative effect
- no bulk scattering
- control of optical density
- no formation of surface gratings
- low shrinkage

Block copolymers with PS matrix

Block copolymer composition: polystyrene as matrix

Synthesis of functionalized block copolymers

polymeranalog. reaction allows variation of side groups

G. Mao et al. Macromolecules, 1997, 30, 2556-2567. J. Adams et al. Makromol. Chem., Rapid Commun. 1989, 10(10), 553-557

Sequential anionic polymerization

DIPIP: Dipiperidinoethane

Halasa et al.

9-BBN: 9-Borabicyclo[3.3.1]nonan

Block copolymers with methoxyazo chromophore

Block	Weight fraction	M n	M _w /M _n	Glass transitions		
copolymer	PS / methoxyazo (wt%)	(g/mol)		T _{g1} (°C)	T _{g2} (°C)	
OMe-1	75 / 25	68100	1.07	104	66	cylinder
OMe-2	<mark>82</mark> / 18	59000	1.04	101	n.d.	cylinder
OMe-3	<mark>89</mark> / 11	56000	1.03	97	n.d.	sphere
OMe-4	98 / 2	52000	1.02	101	n.d.	miscible

Block copolymer azo content: 25 wt. %

Azo-dye containing side-chain polymers

- homopolymer
- statistical copolymer
- block copolymer miscible
- block copolymer with spherical and cylindrical morphology

solid-state with no liquid crystalline order

)Me

Holographic experiments

Influence of block copolymer morphology

Long-term stability

Partial replacement of azo-units with non-absorbing mesogens

- ➡ Concepts to decrease the optical density and maintaining sufficiently high n₁ values
- ⇒ Introduction of liquid crystalline order and increase long term stability

Block copolymers with azo side-groups and mesogenic units in the photoaddressable segment

Holographic experiments

Azo content: 13 wt.% Repeating units: PS = 445; Azo = 24; Mesogen = 24 Molecular weight: M_n 66000 g/mol Glass transition: T_{a1} = 39 °C; T_{a2} = 99 °C

Long-term stability

Long-term stability

Stability of the written gratings for different mesogen concentrations

Volume holographic data storage

Sample thickness vs. optical density

Materials _____

Blends of block copolymer with homopolymer

- Concepts to decrease the optical densityto obtain thick samples for volume holographic data storage
- \Rightarrow Thermoplastic material \rightarrow injection molding

Blend of homopolymer with polystyrene Blend of block copolymer with polystyrene

thickness: 1.1 mm

Blend of **block copolymer (10 wt%)** with polystyrene homopolymer (90 wt%)

Optical light microscopy between crossed polarizers

(a) sample with inscribed gratings between crossed polarizers

(b) between parallel polarizers

(c) first diffraction order

transmission: 69.1 haze: 3.7 clarity: 98.9

thickness: 1.1 mm

Blend composition:

10 wt% block copolymer 90 wt% polystyrene homopolymer thickness: 1.1 mm

Block copolymer: CF110

Azo dye: methoxyazobenzene; content: 17.5 wt.% Repeating units: PS = 467; Azo = 28 Molecular weight: M_n 59000 g/mol

Blend composition:

11 wt% block copolymer 89 wt% polystyrene homopolymer thickness: 1.1 mm

Block copolymer: DK25

Azo dye: methoxyazobenzene; content: \approx 5 wt.% Molecular weight: M_n 60000 g/mol

Blend composition:

11 wt% block copolymer89 wt% polystyrene homopolymerthickness: 1.1 mm

Block copolymer: DK25

Azo dye: methoxyazobenzene; content: ≈ 5 wt.% Molecular weight: M_n 60000 g/mol

Angular multiplexing of images

Blend of **block copolymer (10 wt%)** with polystyrene homopolymer (90 wt%)

Eight reconstructed holographic images, written at the same location

angular distances 1 wavelength 514 nm s:s-polarization 2 J/cm2 per hologram

thickness: 1.1 mm

Acknowledgement

Coworkers and collaboration partners

Dietrich Haarer and Daniela Kropp

Funding:

SFB 481 Project B2 (German Science Foundation) BAYER AG Fonds of the Chemical Industry

