- Nanorod polymer solar cell (Wendy Huynh, Janke Dittmer), Delia Milliron, Ilan Gur Collaboration with Prof. Jean Frechet
- Tetrapod Electrical Measurements Yi Cui, Prof. Uri Banin

Synthesis: Libero Manna, Erik Scher, Delia Milliron, Steven Hughes, Haitao Liu Antonis Kanaras

P. AlivisatosDepartment of Chemistry, UC BerkeleyMolecular Foundry, Lawrence Berkeley National Lab

Conventional versus "Excitonic or Distibuted Junction" Solar Cells

- •Small exciton binding energy
- •High e-,h+ mobilities
- •Directed paths
- •"thick films"
- •Rigid
- •Must be made by vacuum deposition

- •High exciton binding energy
- •Hopping conductivity/low mobility
- •Enhanced Oscillator strength – thin films (~100 nm)
- •Flexible (1 inch bend radius)
- •All solution processing

Semiconductor Nanocrystals and Polymers Band Offsets and Electrical Devices

Schlamp, M. C.; Peng, X.; Alivisatos, A. P., J. Appl. Phys. 1997, 82, 5837-5842.

Self-assembled Nanorod-Polymer Photovoltaics

Transport: Bicontinuous Network

Faceting in Hexagonal CdSe Nanocrystals

binary surfactant mixture

Tri-octyl phosphine oxide (TOPO)

Hexyl phosphonic acid (HPA)

CdSe rods

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E. Kadavanich, A. P. Alivisatos, *Nature* 2000, 404, 59-61.

Simulations of Selective Adhesion

FIG. 1: Ideal wurtzite and relaxed structure of $Cd_{33}Se_{33}$ showing the (0001),(0001), (0110) and (1120) facets to which ligands are attached. Cd (Se) atoms are shown in green (gray).

	$Cd_{15}Se_{15}$		Cd ₃₃ Se ₃₃			
	$(000\overline{1})$	(0001)	$(000\overline{1})$	(0001)	$(01\overline{1}0)$	$(11\overline{2}0)$
Ligand	Cd	Se	Cd	Se	Cd/Se	Cd/Se
PO	1.06	0.66	0.85	0.63	1.23	1.37
PA	1.12	0.66	1.11	0.67	1.45	1.26
CA	0.68	0.42				
TMA	0.91	1.05				

TABLE I: Calculated binding energies of phosphine oxide (PO), phosphonic acid (PA), carboxylic acid (CA) and trimethylamine (TMA) ligands to the $(0001),(000\overline{1}), (01\overline{1}0)$ and $(11\overline{2}0)$ facets of Cd₁₅Se₁₅ and Cd₃₃Se₃₃ quantum dots. All binding energies in eV.

Aaron Puzder, Andrew J. Williamson, Natalia Zaitseva, and Giulia Galli Lawrence Livermore National Laboratory planewave implementation of density functional theory.

Independent control of length and diameter

⁵⁰ nm

Bandgap vs. width and length

Li, L. S., J. T. Hu, W. D. Yang and A. P. Alivisatos (2001). "Band gap variation of sizeand shape-controlled colloidal CdSe quantum rods." <u>Nano Letters</u> **1**(7): 349-351.

Nanocrystal/Polymer Solar Cells

Huynh, W. U., J. J. Dittmer, Alivisatos (2002). "Hybrid nanorod-polymer solar cells." Science 295(5564): 2425-2427.

CdSe nanorod/P3HT films

spin cast from 8% pyridine 92% chloroform solvent mixture

Huynh, W. U., J. J. Dittmer, W. C. Libby, G. L. Whiting and A. P. Alivisatos (2003).

"Controlling the morphology of nanocrystal-polymer composites for solar cells." <u>Advanced Functional Materials</u> 13(1): 73-79.

Shape and Performance

Plastic/Nanorod Solar Cell Power Efficiency

AM 1.5 Efficiency

Power Conversion: **1.7%** Short Circuit Current: 5.8 mA/cm² Fill Factor: 0.42 Voc : 0.67 V

Wurtzite and Zinc Blende polytypism a mechanism for branching II-VI nanocrystals

WZ Stabilized by surfactant Growth in WZ

ZB More stable by 7meV/unit cell nucleation in ZB

Manna, L., E. C. Scher, et al. (2000). "Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals." Journal of the American Chemical Society **122**(51): 12700-12706.

Manna, L., D. J. Milliron, et al. (2003). "Controlled growth of tetrapod-branched inorganic nanocrystals." <u>Nature</u> <u>Materials</u> **2**(6): 382-385.

CdTe Tetrapods

Manna, L., D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos "Controlled growth of tetrapod-branched inorganic nanocrystals." Nature Materials 2(6): 382-385. (2003).

Field of Tetrapods

Quantum Confinement in Tetrapods

Electrical contact to tetrapods

Yi Cui and Michael Bjork

Single electron charging

zero-conductance gap changeable by the gate voltage - the signature of single electron charging.

3D Conductance plots –Summary

Nanorod -"single dot"

Types of coupling

Ionic-bonding

Big arm	Small dot	Big arm
	_	
	_	

Current can flow only if the charging energy levels of **three energy ladders** line up within bias or temperature window.

High coupling resistance

Covalent bonding

Three dots merge into single big quantum dot with distinct polarization energy. There is only one **energy ladder**

Low coupling resistance ~ quantum resistance

Signatures of a coupled system – lionic case

Temperature 5K

- 1) the Coulomb diamonds do not close at zero bias voltage.
- 2) Saw-tooth shapes of the diamonds.

(Yi Cui, Uri Banin and Paul Alivisatos, unpublished results)

Additional evidence for ionic coupling

The number of current peaks in a gate scan increases with bias.

Dependence on temperature

The number of current peaks in a gate scan increases with temperature.

Single nanorod transport

- 1). Voltage gap in I-V scan, gap size modulated by gate voltage.
- 2). Periodic oscillations of current vs gate voltage at fixed bias.

(Yi Cui, Uri Banin and Paul Alivisatos, unpublished results)

Semiconductor Nanorod as a Single Quantum System

Differentiatial conductance vs bias and gate voltage (4.9K)

Individual well-defined Coulomb diamonds- single quantum dot behavior. Arrows indicate sudden jumps of single charges

Temperature and Voltage Dependence

Number of conductance peaks constant vs. T and V, suggesting a single dot behavior.

Strong Coupling Example

Future studies with Tetrapod transistors

3rd arm gate experiment

Chemical or Mechanical Modulation with the 4th arm
Umbrella Motions

Reversible vs Irreversible Deformation of Tetrapods

- Nanorod polymer solar cell (Wendy Huynh, Janke Dittmer), Delia Milliron, Ilan Gur Collaboration with Prof. Jean Frechet
- Tetrapod Electrical Measurements Yi Cui, Prof. Uri Banin

Synthesis: Libero Manna, Erik Scher, Delia Milliron, Steven Hughes, Haitao Liu Antonis Kanaras

P. AlivisatosDepartment of Chemistry, UC BerkeleyMolecular Foundry, Lawrence Berkeley National Lab