Materials and Preparation Methods for Miniaturized Solid Oxide Fuel Cells

ICE-2005

L. J. Gauckler, U. Mücke, D. Beckel, J. Rupp & A. Infortuna

Department Materials ETH Zurich Switzerland

1

Conference on Electroceramics 2005

June 12–16, 2005 KIST, Seoul Korea

ETH Zurich

Outline

- Motivation
- μ Fuel Cell Systems
- μ Solid Oxide Fuel Cell Hot Plate
 - Pulsed Laser Deposition
 - Spray Pyrolysis
 - > Electrolyte
 - Cathode
 - Anode & Current Collector
- Acknowledgement

ONEBAT Project Goals

The goal of the ONEBAT project:

Miniaturized solid oxide fuel cell (SOFC) technology for small portable electronic applications such as cellular phones.

- Very high energy capacity (at least **3 times more than current batteries**)
- Immediate charging (using compressed gas as a fuel)
- Power network and geographical independence

Systems Energy Densities

- Values as announced by system developers
- µ-PEFC lays very high but metal hydride technology is not down-scalable
- All the published energy density values for **µ**-DMFC are significantly lower than press releases statements (e.g. "5 times longer run-time than Li-ion"...)

Outline

- Motivation
- μ Solid Oxide Fuel Cell System
- μ Solid Oxide Fuel Cell Hot Plate
 - > Pulsed Laser Deposition
 - Spray Pyrolysis
 - > Electrolyte
 - > Cathode
 - Anode & Current Collector
- Acknowledgement

Scientific and technological objectives

SOFC pack with **µ-fuel-cell** with:

- 1 W continuous power (5 W peak) within 30 cm³ (incl. 15 cm³ fuel)
- operating directly on liquid gas (e.g. **butane**)
- reaching an unprecedented battery capacity (1000 Wh/litre & 1000 Wh/kg)
- integrating fuel cell on the chip using **micro-fabrication technology**

μ-Solid Oxide Fuel Cell System

The hot module consists of four subsystems: the fuel cell (FC), the fuel reformer (RF), heat exchanger (HX), and the post combustor (PC)

Swiss Federal Institute of Material S^{Technology}

Nonmetallic Inorganic Materials, ETH Zurich

μ-SOFC test unit

SnO2 sensor array on micro-hot plate by MIMIC

M. Heule, L. J. Gauckler Sensors and Actuators B 93 (2003) 100–106

Heat loss from micro-hotplates.

10 M. Heule, L. J. Gauckler, Adv. Mater. 13, No. 23, 1790-93, 2001

Outline

- Motivation
- μ Solid Oxide Fuel Cell System
- + μ Solid Oxide Fuel Cell Hot Plate
 - Pulsed Laser Deposition
 - Spray Pyrolysis
 - > Electrolyte
 - > Cathode
 - Anode & Current Collector
- Acknowledgement

PLD-Experimental

Nonmetallic Inorganic Materials, ETH Zurich

PLD of CGO and YSZ Films: Influence of pressure

CGO prepared by PLD

A. Infortuna, L. J. Gauckler, Thin Solid Films, in press, 2005 and

Trtik, V., et al. Appl Phys A, 1999. 69: p. S815-S818. Norton, D.P., et al. Appl, Phys Lett, 1999. 74(15): p. 2134.

PLD preparation of 8-YSZ films

A. Infortuna, L. J. Gauckler, Thin Solid Films, in press, 2005 and Trtik, V., et al. Appl Phys A, 1999. 69: p. S815-S818. Norton, D.P., et al. Appl, Phys Lett, 1999. 74(15): p. 2134.

Outline

- Motivation
- μ Solid Oxide Fuel Cell System
- + μ Solid Oxide Fuel Cell Hot Plate
 - Pulsed Laser Deposition
 - Spray Pyrolysis
 - > Electrolyte
 - > Cathode
 - Anode & Current Collector
- Acknowledgement

Electr

pray Deposition

A.M. Ganan-Calvo et al., *Journal of Aerosol Science*, 28, 249 (1997).
C.H. Chen et al., *Journal of Materials Chemistry*, 6, 765 (1996).
D. Perednis et.al.; Thin Solid Films; 474 ; 84-95; 2005

Solvent [vol.%]	50% C ₂ H ₅ OH 50% C ₈ H ₁₈ O ₃	50% C ₂ H ₅ OH 50% C ₈ H ₁₈ O ₃
Salts	Zr(C ₆ H ₇ O ₂) ₄ YCl ₃ ·6H ₂ O	Zr(C ₆ H ₇ O ₂) ₄ YCl ₃ ·6H ₂ O
Concentration [mol/l]	0.1	0.1

Film Formation

<

T1 < T2

Cross-section of the fuel cell

Perednis, D.; Wilhelm, O.; Pratsinis, S.E.; Gauckler, L. J.; Thin Solid Films (474); 84-95; 2005

Dense electrolyte with thickness of 500 nm on porous anode support substrate Grain size 30-50 nm

Cell with CeO $_{\rm 2}ss$ / YSZ / CeO $_{\rm 2}ss$ composite electrolyte

Perednis, D.; Wilhelm, O.; Pratsinis, S.E.; Gauckler, L. J.; Thin Solid Films (474); 84-95; 2005

Improved power output due to multilayer electrolyte of $Ce_{0.8}Y_{0.2}O_{1.9}/Zr_{0.85}Y_{0.15}O_{1.925}/Ce_{0.8}Y_{0.2}O_{1.9}$

Outline

- Motivation
- μ Solid Oxide Fuel Cell System
- + μ Solid Oxide Fuel Cell Hot Plate
 - Pulsed Laser Deposition
 - Spray Pyrolysis

> Electrolyte

- > Cathode
- Anode & Current Collector
- Acknowledgement

Spray pyrolysis and PLD thin films CeO2 and CGO

Crystallization of SP films by thermal treatment

XRD patterns of YSZ film deposited on Inconel 600 at 275°C, annealing time 15 minutes

As deposited films are amorphous

Amorphous \rightarrow crystalline transition onset at ~ 450°C

Perednis, D.; Wilhelm, O.; Pratsinis, S.E.; Gauckler, L. J.; Thin Solid Films (474); 84-95; 2005

Nano-crystalline microstructure

YSZ film on Inconel 600 after annealing at 700°C for 2 hrs

TEM Diffraction Pattern

 \Rightarrow Crystalline

TEM Dark Field Image

⇒ Grain Size ~10 nm

Thermal stability of Ce_{0.8}Gd_{0.2}O_{1.9-x}

Model of limiting grain size holds for grains below 120 nm Parabolic grain growth law holds for μ m grains

J. Rupp, Nonmetallic Materials ETH Zurich, Acta Mat, in press, 2005

Microstrain and Grain Growth of nano- Ce_{0.8}Gd_{0.2}O_{1.9-x}

- Microstrain and grain growth cease within first 10hrs of isothermal dwell.
- Both properties follow exponential laws with a characteristic relaxation time τ

J. Rupp, Nonmetallic Materials ETH Zurich, Acta Mat, in press, 2005

Characteristic times for grain growth and strain relaxation of of nano- Ce_{0.8}Gd_{0.2}O_{1.9-x} prepared by spray pyrolysis

• Increasing T (600-900°C) results in faster grain growth + faster microstrain relaxation

→Self limitting grain growth. Metastable nanosized microstructures establishes.

• At higher T (> 1100° C) fast microstrain relaxation and Ostwald ripening of grains.

→ Parabolic grain growth ; not limited anymore.

J. Rupp, Nonmetallic Materials ETH Zurich, Acta Mat, in press, 2005

Limiting Grain Growth due to Grain Size

Influence of tripple junction mobility (γ_{tj}) on GG kinetics can not be neglected for very small grains like in nano-materials.

*Gottstein G. and Shvindlerman L.S., Acta materialia. **50**, 703, 2002 *Weygand D., Brechet Y., Lepinoux J., Acta materialia. **46**, 6559, 1998 *Gottstein G., Ma Y., Shvindlerman L.S., Acta materialia. **2005**, in press

Grain boundary mobility Nonmetallic Inorganic Materials, ETH Zurich Thermal stability of $Ce_{0.8}Gd_{0.2}O_{1.9-X}$

Temperature [° C] 1200 800 1000 600 $k = k_0 \exp\left(-\frac{Q}{R}\frac{1}{T}\right) \propto M$ 1E-40 xrd Grain boundary mobility [m³/Ns] 0 sem 1E-41 1E-42 0 activation 1E-43 energy 1E-44 d=grain size 1E-45 n=grain growth exponent t=time 1E-46 R=gas constant T=temperature γ =grain boundary energy=0.3J/m² (*) 11 7 8 9 10 12 6 10000 / Temperature [K]

Activation energy ∼1.13 eV for nm grain sized CGO → grain boundary diffusion

J. Rupp, Nonmetallic Materials ETH Zurich Acta Mat, in press, 2005

Influence of doping on Grain Growth

J. Rupp, Nonmetallic Materials ETH Zurich

Fast grain growth in CeO_2 films Slow grain growth in $Ce_{0.8}Gd_{0.2}O_{1.9-x}$ due to solute drag.

Spray pyrolysis thin films.

Nonmetallic Inorganic Materials, ETH Zurich Influence of doping on Grain Growth

J. Rupp, Nonmetallic Materials ETH Zurich

Stable microstructures after first 10 h of isothermal dwell.

Microstructural evolution:

CGO thin films

J. Rupp, Nonmetallic Materials ETH Zurich Acta Mat, 2005

Electrical properties of Ce_{0.8}Gd_{0.2}O_{1.9-x}

• Nanocrystalline Ce_{0.8}Gd_{0.2}O_{1.9-x} thin films show lower ionic conductivity compared to microcrystalline bulk samples due to large amount of GB.

J. Rupp, Nonmetallic Materials ETH Zurich; Acta Mat,in press, 2005

Electrical properties of Ce_{0.8}Gd_{0.2}O_{1.9-x} Films & Bulk

J. Rupp, Nonmetallic Materials ETH Zurich Acta Mat, 2005

• Thin film and bulk $Ce_{0.8}Gd_{0.2}O_{1.9-x}$ are predominantly ionic conductors for T < 600°C, with high enough ionic conductivity to operate as electrolytes in a SOFC system.

- Thin film microstructures are very stable after pre-annealing
- \rightarrow low electrical conductivity degradation.

J. Rupp, Nonmetallic Materials ETH Zurich; Acta Mat, in press, 2005

^{sTechnology} Electrolytic Domain Boundary of Ce_{0.8}Gd_{0.2}O_{1.9-x} and CeO₂ Thin Films

• $Ce_{0.8}Gd_{0.2}O_{1.9-x}$ and CeO_2 gets more easily reduced with decreasing grain size below ~400 nm

J. Rupp, Nonmetallic Materials ETH Zurich Acta Mat, in press, 2005

注創 コート

Material

Swiss Federal Institute of

Outline

Motivation: μ - Solid Oxide Fuel Cell & One-Bat Project

 μ - Solid Oxide Fuel Cell System

$\boldsymbol{\mu}$ - Solid Oxide Fuel Cell Hot Plate

Pulsed Laser Deposition Spray Pyrolysis

Electrolyte Cathode Anode & current collector

Acknowledgement

Cathode Materials

D. Beckel; Nonmetallic Materials ETH Zurich

- PLD $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Thin Films
- Spray Pyrolysis La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ Thin Films

La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ by PLD

A. Infortuna; Nonmetallic Materials ETH Zurich

Nonmetallic Inorganic Materials, ETH Zurich

Ratio of Substrate Temperature to Solvent Boiling Point for

 $\mathsf{SP} \operatorname{La}_{\mathrm{o.6}} \mathsf{Sr}_{\mathrm{o.4}} \mathsf{Co}_{\mathrm{o.2}} \mathsf{Fe}_{\mathrm{o.8}} \mathsf{O}_{3}$

D. Beckel; Nonmetallic Materials ETH Zurich

Ratio of deposition temperature to solvent boiling point most important.

Swiss Federal

SP La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O₃ films: microstructures after annealing

D. Beckel; Nonmetallic Materials ETH Zurich

600 °C

LSCF after 3h annealing with varying annealing temperature on Si.

700 °C

Deposition parameters: 255 °C, 1 bar, 30 ml / h, 0.04 mol / l, 30 min. Heating rate 2 °C / min.

30%

6%

900 °C

Pores form and coalesce depending on annealing temperature.

Sintering and pore coalescence during annealing of SP deposited films

Swiss Federal Institute of 27

Nonmetallic Inorganic Materials, ETH Zurich

Material Street Consequences of Pore Coalescence I (grain size ~ film thickness)

- Pore coalescence \rightarrow islands with low connectivity. ullet
- Isolated islands do not contribute to conductivity. ۲
- Electric conductivity should decrease upon pore coalescence for larger grain ulletsizes.

Electric conductivity of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ films on sapphire annealed

Outline

Motivation: μ - Solid Oxide Fuel Cell & One-Bat Project

μ - Solid Oxide Fuel Cell System

$\boldsymbol{\mu}$ - Solid Oxide Fuel Cell Hot Plate

Pulsed Laser Deposition Spray Pyrolysis

Electrolyte Cathode Anode & current collector

Acknowledgement

U. Mücke; Nonmetallic Materials ETH Zurich

Ni-CGO anode thin film and a Ni current collector operating at 550°C.

Deposition of <u>pure</u> NiO Films

U. Mücke; Nonmetallic Materials ETH Zurich

as deposited

annealed at 800 °C for 10 hrs

annealed at 1000 °C for 10 hrs

reduced @ 700°C for 1 hr

CGO and Ni growth model: Two step annealing

U. Mücke; Nonmetallic Materials ETH Zurich

Conductivity Data of 60/40 Ni/CGO Anode Layers

U. Mücke; Nonmetallic Materials ETH Zurich

- $\sigma = f(t)$ in a mixture of dry $H_2: N_2$
- sample remains conductive after 1 cycle => metallic conductivity

FIB preparation thin films for ${\rm TEM}^{\rm Nonmetallic \, Inorganic \, Materials, \, ETH \, Zurich}$

FIB preparation of TEM specimens

Ni-CGO anode

Nonmetallic Inorganic Materials, ETH Zurich

Quantitative Analysis: Nonmetallic Inorganic Materials, ETH Zurich Skeletonization -> Network analysis -> Topology

M. Holzer, EMPA Zurich

Ni grain size distribution from 3D-data

M. Holzer, EMPA Zurich

Material SzurConductivity Data of 60/40 Ni/CGO Anode Layers

 $\sigma = f(T, X_i)$

Swiss Federal Institute of

U. Mücke; Nonmetallic Materials ETH Zurich

and $\sigma = f$ (Ni-grain size & distribution)

Nonmetallic Inorganic Materials, ETH Zurich Ni + Ni/CGO Composite Layer

U. Mücke; Nonmetallic Materials ETH Zurich

- porous Ni as current collector on Ni-CGO layer?
- annealed @ 600 °C for 1 hrs with 1°C up, then 1 hr in 5% $\rm H_2$ in $\rm N_2$ and 2°C down

top view

cross section

Electrochemical Characterization: Cathode/Electrolyte/Anode Tri-Layer

Bieberle, Rupp, Beckel, Mücke, Gauckler, mstnews, in print, June, 2005

Outline

Motivation: μ - Solid Oxide Fuel Cell & One-Bat Project

 μ - Solid Oxide Fuel Cell System

 μ - Solid Oxide Fuel Cell Hot Plate

Pulsed Laser Deposition Spray Pyrolysis

Electrolyte Cathode Anode & current collector Outlook

Acknowledgement

Substrates for free standing ceramic membranes

Free standing triple layer (anode, electrolyte, cathode)

Material Szurich Free Standing 60/40 NiO/CGO Membranes

U. Mücke; Nonmetallic Materials ETH Zurich

- membranes can up to now withstand
 - sudden heating up to 600 °C without rupturing
 - normal handling in lab
- size can be up to 0.5 x 0.5 mm²

membrane after spraying and etching

membrane after heat treatment at 450 °C

After annealing at 600 °C

Free standing triple layer

After etching

Light microscope view from backside on anode (light shining through)

Free standing NiO/CGO anodes

Ce_{0.8}Gd_{0.2}O₂ electrolyte Membrane thickness: 400 nm Largest Membrane: 1 mm Stable up to 350 °C.

600 µm version

Paul Muralt, N. Setter; EPFL

Outline

Motivation: μ - Solid Oxide Fuel Cell & One-Bat Project

 μ - Solid Oxide Fuel Cell System

 μ - Solid Oxide Fuel Cell Hot Plate

Pulsed Laser Deposition Spray Pyrolysis

Electrolyte Cathode Anode & current collector

Acknowledgement

Daniel Beckel

Anja Bieberle

Brandon Bürgler

Ionmetallic Inorganic Materials, ETH Zurich

Eva Jud

- INSTITUT FÜR MIKROSYSTEMTECHNIK, NTB, BUCHS
- Züricher Hochschule Winterthur
 - Ceramics Laboratory , EPF- Lausanne
- Laboratory of Thermodynamics in Emerging Technologies (LTNT), ETH Zürich
- KTI (CH)

٠

Ulrich Mücke

Anna Infortuna

Michel Prestat

Jenny Rupp

Jörg Richter